226 research outputs found

    Classification of sporting activities using smartphone accelerometers

    Get PDF
    In this paper we present a framework that allows for the automatic identification of sporting activities using commonly available smartphones. We extract discriminative informational features from smartphone accelerometers using the Discrete Wavelet Transform (DWT). Despite the poor quality of their accelerometers, smartphones were used as capture devices due to their prevalence in today’s society. Successful classification on this basis potentially makes the technology accessible to both elite and non-elite athletes. Extracted features are used to train different categories of classifiers. No one classifier family has a reportable direct advantage in activity classification problems to date; thus we examine classifiers from each of the most widely used classifier families. We investigate three classification approaches; a commonly used SVM-based approach, an optimized classification model and a fusion of classifiers. We also investigate the effect of changing several of the DWT input parameters, including mother wavelets, window lengths and DWT decomposition levels. During the course of this work we created a challenging sports activity analysis dataset, comprised of soccer and field-hockey activities. The average maximum F-measure accuracy of 87% was achieved using a fusion of classifiers, which was 6% better than a single classifier model and 23% better than a standard SVM approach

    Breathing feedback system with wearable textile sensors

    Get PDF
    Breathing exercises form an essential part of the treatment for respiratory illnesses such as cystic fibrosis. Ideally these exercises should be performed on a daily basis. This paper presents an interactive system using a wearable textile sensor to monitor breathing patterns. A graphical user interface provides visual real-time feedback to patients. The aim of the system is to encourage the correct performance of prescribed breathing exercises by monitoring the rate and the depth of breathing. The system is straightforward to use, low-cost and can be installed easily within a clinical setting or in the home. Monitoring the user with a wearable sensor gives real-time feedback to the user as they perform the exercise, allowing them to perform the exercises independently. There is also potential for remote monitoring where the user’s overall performance over time can be assessed by a clinician

    Identification of sleep apnea events using discrete wavelet transform of respiration, ECG and accelerometer signals

    Get PDF
    Sleep apnea is a common sleep disorder in which patient sleep patterns are disrupted due to recurrent pauses in breathing or by instances of abnormally low breathing. Current gold standard tests for the detection of apnea events are costly and have the addition of long waiting times. This paper investigates the use of cheap and easy to use sensors for the identification of sleep apnea events. Combinations of respiration, electrocardiography (ECG) and acceleration signals were analysed. Results show that using features, formed using the discrete wavelet transform (DWT), from the ECG and acceleration signals provided the highest classification accuracy, with an F1 score of 0.914. However, the novel employment of just the accelerometer signal during classification provided a comparable F1 score of 0.879. By employing one or a combination of the analysed sensors a preliminary test for sleep apnea, prior to the requirement for gold standard testing, can be performed

    A machine learning framework for automatic human activity classification from wearable sensors

    Get PDF
    Wearable sensors are becoming increasingly common and they permit the capture of physiological data during exercise, recuperation and everyday activities. This work investigated and advanced the current state-of-the-art in machine learning technology for the automatic classification of captured physiological data from wearable sensors. The overall goal of the work presented here is to research and investigate every aspect of the technology and methods involved in this field and to create a framework of technology that can be utilised on low-cost platforms across a wide range of activities. Both rudimentary and advanced techniques were compared, including those that allowed for both real-time processing on an android platform and highly accurate postprocessing on a desktop computer. State-of-the-art feature extraction methods such as Fourier and Wavelet analysis were also researched to ascertain how well they could extract discriminative physiological information. Various classifiers were investigated in terms of their ability to work with different feature extraction methods. Consequently, complex classification fusion models were created to increase the overall accuracy of the activity recognition process. Genetic algorithms were also employed to optimise classifier parameter selection in the multidimensional search space. Large annotated sporting activity datasets were created for a range of sports that allowed different classification models to be compared. This allowed for a machine learning framework to be constructed that could potentially create accurate models when applied to any unknown dataset. This framework was also successfully applied to medical and everyday-activity datasets confirming that the approach could be deployed in different application settings

    Wearable sensors and feedback system to improve breathing technique

    Get PDF
    Breathing is an important factor in our well-being as it oxygenates the body, revitalizes organs, cells and tissues. It is a unique physiological system in that it is both voluntary and involuntary. By breathing in a slow, deep and regular manner, the heartbeat become smooth and regular, blood pressure normalizes, stress hormones drop, and muscles relax. Breathing techniques are important for athletes to improve performance and reduce anxiety during competitions. Patients with respiratory illnesses often tend to take shallow short breaths causing chest muscle weakness, reduced oxygen circulation, shortness of breath and fatigue. Proper breathing exercises can help to reduce these symptoms as well as strengthen muscles, improve posture and mental ability. This work presents a wearable system which monitors breathing technique and provides straightforward feedback to the user through a graphical interface

    Towards automatic activity classification and movement assessment during a sports training session

    Get PDF
    Abstract—Motion analysis technologies have been widely used to monitor the potential for injury and enhance athlete perfor- mance. However, most of these technologies are expensive, can only be used in laboratory environments and examine only a few trials of each movement action. In this paper, we present a novel ambulatory motion analysis framework using wearable inertial sensors to accurately assess all of an athlete’s activities in real training environment. We firstly present a system that automatically classifies a large range of training activities using the Discrete Wavelet Transform (DWT) in conjunction with a Random forest classifier. The classifier is capable of successfully classifying various activities with up to 98% accuracy. Secondly, a computationally efficient gradient descent algorithm is used to estimate the relative orientations of the wearable inertial sensors mounted on the shank, thigh and pelvis of a subject, from which the flexion-extension knee and hip angles are calculated. These angles, along with sacrum impact accelerations, are automatically extracted for each stride during jogging. Finally, normative data is generated and used to determine if a subject’s movement technique differed to the normative data in order to identify potential injury related factors. For the joint angle data this is achieved using a curve-shift registration technique. It is envisaged that the proposed framework could be utilized for accurate and automatic sports activity classification and reliable movement technique evaluation in various unconstrained environments for both injury management and performance enhancement

    Automatic activity classification and movement assessment during a sports training session using wearable inertial sensors

    Get PDF
    Motion analysis technologies have been widely used to monitor the potential for injury and enhance athlete performance. However, most of these technologies are expensive, can only be used in laboratory environments and examine only a few trials of each movement action. In this paper, we present a novel ambulatory motion analysis framework using wearable inertial sensors to accurately assess all of an athlete’s activities in an outdoor training environment. We firstly present a system that automatically classifies a large range of training activities using the Discrete Wavelet Transform (DWT) in conjunction with a Random forest classifier. The classifier is capable of successfully classifying various activities with up to 98% accuracy. Secondly, a computationally efficient gradient descent algorithm is used to estimate the relative orientations of the wearable inertial sensors mounted on the thigh and shank of a subject, from which the flexion-extension knee angle is calculated. Finally, a curve shift registration technique is applied to both generate normative data and determine if a subject’s movement technique differed to the normative data in order to identify potential injury related factors. It is envisaged that the proposed framework could be utilized for accurate and automatic sports activity classification and reliable movement technique evaluation in various unconstrained environments

    Smart tablecloths - ambient feedback of domestic electricity consumption

    Get PDF
    In this work we discuss the topic of ambiently informing individuals of their home electricity usage, with the ultimate goal being to induce positive change and reduction in users’energy usage. We believe that simple ambient feedback, integrated into the surroundings as the colour of a home textile, may provide a powerful motivator in better raising awareness of electricity comsumption. This demonstrator shows the use of an illuminated colour-changing fabric to provide feedback on realtime energy use

    Automatically detecting asymmetric running using time and frequency domain features

    Get PDF
    Human motion analysis technologies have been widely employed to identify injury determining factors and provide objective and quantitative feedback to athletes to help prevent injury. However, most of these technologies are: ex- pensive, restricted to laboratory environments, and can require significant post processing. This reduces their ecological validity, adoption and usefulness. In this paper, we present a novel wearable inertial sensor framework to accurately distinguish between symmetrical and asymmetrical running patterns in an unconstrained environment. The framework can automatically classify symmetry/asymmetry using Short Time Fourier Trans- form (STFT) and other time domain features in conjunction with a customized Random Forest classifier. The accuracy of the designed framework is up to 94% using 3-D accelerometer and 3-D gyroscope data from a sensor node attached on the upper back of a subject. The upper back inertial sensors data were then down-sampled by a factor of 4 to simulate utilizing low-cost inertial sensors whilst also facilitating a decrease of the computational cost to achieve near real-time application. We conclude that the proposed framework can potentially pave the way for employing low-cost sensors, such as those used in smartphones, attached on the upper back to provide injury related and performance feedback in real-time in unconstrained environments

    HeartHealth: new adventures in serious gaming

    Get PDF
    We present a novel, low-cost, interactive, exercise-based rehabilitation system. Our research involves the investigation and development of patient-centric, sensor-based rehabilitation games and surrounding technologies. HeartHealth is designed to provide a safe, personalised and fun exercise environment that could be deployed in any exercise based rehabilitation program. HeartHealth utilises a cloud-based patient information management system built on FIWARE Generic Enablers,and motion tracking coupled with our sophisticated motion comparison algorithms. Users can record customised exercises through a doctors interface and then play the rehabilitation game where they must perform a sequence of their exercises in order to complete the game scenario. Their exercises are monitored, recorded and compared by our Motion Evaluation software and real-time feedback is than given based on the users performance
    corecore